Squirals and Beyond Substitution Tilings With Singular Continuous Spectrum
[1] | I. Abou and P. Liardet, Flots chaînés, Proceedings of the Sixth Congress of Romanian Mathematicians Vol.1, L. Beznea, V. Brinzanescu, R. Purice, et.al. (eds.), Editura Academiei Române, Bucharest (2009), 401–432. |
[2] | J.-P. Allouche and P. Liardet, Generalized Rudin–Shapiro sequences, Acta Arith., 60 (1991) , 1-27. doi: 10.4064/aa-60-1-1-27. |
[3] | M. Baake, N. P. Frank, U. Grimm and E. A. Robinson, Geometric properties of a binary non-Pisot inflation and absence of absolutely continuous diffraction, Studia Math., 247 (2019) , 109-154. doi: 10.4064/sm170613-10-3. |
[4] | M. Baake, F. Gähler and U. Grimm, Examples of substitution systems and their factors, J. Int. Seq., 16 (2013), 13.2.14, 18 pp. |
[5] | M. Baake, F. Gähler and N. Mañibo, Renormalisation of pair correlation measures for primitive inflation rules and absence of absolutely continuous diffraction, Commun. Math. Phys., 370 (2019) , 591-635. doi: 10.1007/s00220-019-03500-w. |
[6] | M. Baake and U. Grimm, Aperiodic Order Volume 1. A Mathematical Invitation, Cambridge University Press , Cambridge, 2013. doi: 10.1017/CBO9781139025256. |
[7] | M. Baake and U. Grimm, Squirals and beyond: Substitution tilings with singular continuous spectrum, Ergodic Th. & Dynam. Syst., 34 (2014) , 1077-1102. doi: 10.1017/etds.2012.191. |
[8] | M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra, Ergod. Th. & Dynam. Syst., 24 (2004) , 1867-1893. doi: 10.1017/S0143385704000318. |
[9] | M. Baake, D. Lenz and A. van Enter, Dynamical versus diffraction spectrum for structures with finite local complexity, Ergod. Th. & Dynam. Syst., 35 (2015) , 2017-2043. doi: 10.1017/etds.2014.28. |
[10] | E. Bannai and E. Bannai, Spin models on finite cyclic groups, J. Alg. Combin., 3 (1994) , 243-259. doi: 10.1023/A:1022407800541. |
[11] | L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Cambridge University Press , Cambridge, 2007. doi: 10.1017/CBO9781107326026. |
[12] | A. Bartlett, Spectral theory of $\mathbb{Z}^d$ substitutions, Ergodic Th. & Dynam. Syst., 38 (2018) , 1289-1341. doi: 10.1017/etds.2016.66. |
[13] | A. Berlinkov and B. Solomyak, Singular substitutions of constant length, Ergodic Th. & Dynam. Syst., 39 (2019) , 2384-2402. doi: 10.1017/etds.2017.133. |
[14] | A. I. Bufetov and B. Solomyak, A spectral cocycle for substitution systems and translation flows, J. Anal. Math., 141 (2020) , 165-205. doi: 10.1007/s11854-020-0127-2. |
[15] | C. Cabezas, Homomorphisms between multidimensional constant-shape substitutions, preprint, arXiv: 2106.10504. |
[16] | L. Chan, U. Grimm and I. Short, Substitution-based structures with absolutely continuous spectrum, Indag. Math., 29 (2018) , 1072-1086. doi: 10.1016/j.indag.2018.05.009. |
[17] | M. I. Cortez, $ {\mathbb{Z}}^d$ Toeplitz arrays, Discr. Contin. Dynam. Syst. A, 15 (2006) , 859-881. doi: 10.3934/dcds.2006.15.859. |
[18] | E. M. Coven and A. Meyerowitz, Tiling the integers with translates of one finite set, J. Algebra, 212 (1999) , 161-174. doi: 10.1006/jabr.1998.7628. |
[19] | J. Dubédat, Topics on abelian spin models and related problems, Probab. Surveys, 8 (2011) , 374-402. doi: 10.1214/11-PS187. |
[20] | E. H. el Abdalaoui and M. Lemańczyk, Approximately transitive dynamical systems and simple spectrum, Arch. Math., 97 (2011) , 187-197. doi: 10.1007/s00013-011-0285-7. |
[21] | T. Fernique, Local rule substitutions and stepped surfaces, Theoret. Comp. Sci., 380 (2007) , 317-329. doi: 10.1016/j.tcs.2007.03.021. |
[22] | N. P. Frank, Introduction to hierarchical tiling dynamical systems, In Substitution and Tiling Dynamics: Introduction to Self-inducing Structures, S. Akiyama and P. Arnoux (eds.), LNM 2773, Springer, Cham (2020), 33–95. |
[23] | N. P. Frank, Multidimensional constant-length substitution sequences, Topology & Appl., 152 (2005) , 44-69. doi: 10.1016/j.topol.2004.08.014. |
[24] | N. P. Frank, Substitution sequences in $\mathbb{Z}^d$ with a nonsimple Lebesgue component in the spectrum, Ergodic Th. & Dynam. Syst., 23 (2003) , 519-532. doi: 10.1017/S0143385702001256. |
[25] | N. P. Frank and L. Sadun, Fusion: A general framework for hierarchical tilings of $\mathbb{R}^d$, Geom. Dedicata, 171 (2014) , 149-186. doi: 10.1007/s10711-013-9893-7. |
[26] | N. P. Frank and L. Sadun, Fusion tilings with infinite local complexity, Top. Proc. 43 (2014) 235–276. |
[27] | R. Greenfeld and T. Tao, The structure of translational tilings in $\mathbb{Z}^d$, Discr. Anal., 16 (2021), arXiv: 2010.03254, 28 pp. |
[28] | K. Gröchenig and A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl., 1 (1994) , 131-170. doi: 10.1007/s00041-001-4007-6. |
[29] | P. R. Halmos and J. von Neumann, Operator methods in classical mechanics II, Ann. Math., 43 (1942) , 332-350. doi: 10.2307/1968872. |
[30] | H. Helson, Cocycles on the circle, J. Oper. Theory, 16 (1986) , 189-199. |
[31] | R. Kenyon, Self-replicating tilings, Contemp. Math., 135 (1992) , 239-263. doi: 10.1090/conm/135/1185093. |
[32] | J. C. Lagarias and Y. Wang, Integral self-affine tiles in $\mathbb{R}^n$ I. standard and nonstandard digit sets, J. London Math. Soc., 54 (1996) , 161-179. doi: 10.1112/jlms/54.1.161. |
[33] | J. C. Lagarias and Y. Wang, Self-affine tiles in $\mathbb{R}^n$, Adv. Math., 121 (1996) , 21-49. doi: 10.1006/aima.1996.0045. |
[34] | J.-Y. Lee, R. V. Moody and B. Solomyak, Consequences of pure point diffraction spectra for multiset substitution systems, Discrete Comput. Geom., 29 (2003) , 525-560. doi: 10.1007/s00454-003-0781-z. |
[35] | J.-Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and diffraction spectra, Ann. Henri Poincaré, 3 (2002) , 1003-1018. doi: 10.1007/s00023-002-8646-1. |
[36] | D. Lenz, Spectral theory of dynamical systems as diffraction theory of sampling functions, Monats. Math., 192 (2020) , 625-649. doi: 10.1007/s00605-020-01419-2. |
[37] | N. Mañibo, Lyapunov exponents for binary substitutions of constant length, J. Math. Phys., 58 (2017), 113504, 9 pp. |
[38] | N. Mañibo, D. Rust and J. Walton, Spectral properties of substitutions on compact alphabets, preprint, arXiv: 2108.01762. |
[39] | R. Meshulam, On subsets of finite abelian groups with no $3$-term arithmetic progression, J. Combin. Theor. A, 71 (1995) , 168-172. doi: 10.1016/0097-3165(95)90024-1. |
[40] | M. G. Nadkarni, The skew product, In Spectral Theory of Dynamical Systems, R. B. Bapat, V. S. Borkar, P. Chaudhuri, et.al. (eds.), Hindustan Book Agency, Gurgaon (1998), 37–39. |
[41] | M. Queffélec, Substitution Dynamical Systems–Spectral Analysis, 2nd. ed., LNM 1294, Springer, Berlin, 2010. |
[42] | M. Queffélec, Une nouvelle properiété des suites de Rudin–Shapiro, Ann. Inst. Fourier, 37 (1987) , 115-138. doi: 10.5802/aif.1089. |
[43] | E. A. Robinson, Non-abelian extensions have nonsimple spectrum, Compos. Math., 65 (1988), 155-170. |
[44] | B. Solomyak, Dynamics of self-similar tilings, Ergodic Th. & Dynam. Syst., 17 (1997), 695–738 and Ergodic Th. & Dynam. Syst., 19 (1999), 1685 (erratum). |
[45] | B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., 20 (1998) , 265-279. doi: 10.1007/PL00009386. |
[46] | M. Viana, Lectures on Lyapunov Exponents, Cambridge University Press , Cambridge, 2014. doi: 10.1017/CBO9781139976602. |
[47] | A. Vince, Digit tiling of Euclidean space, In Directions in Mathematical Quasicrystals, M. Baake and R. V. Moody (eds.), AMS, Providence, RI (2000), 329–370. |
[48] | A. Vince, Rep-tiling Euclidean space, Aequationes Math., 50 (1995) , 191-213. doi: 10.1007/BF01831118. |
woodruffbleturejaway.blogspot.com
Source: https://www.aimsciences.org/article/doi/10.3934/dcds.2022105
0 Response to "Squirals and Beyond Substitution Tilings With Singular Continuous Spectrum"
Postar um comentário