Squirals and Beyond Substitution Tilings With Singular Continuous Spectrum
| [1] | I. Abou and P. Liardet, Flots chaînés,                Proceedings of the Sixth Congress of Romanian Mathematicians Vol.1, L. Beznea, V. Brinzanescu, R. Purice, et.al. (eds.), Editura Academiei Române, Bucharest (2009), 401–432.   | 
| [2] | J.-P. Allouche and P. Liardet, Generalized Rudin–Shapiro sequences,                Acta Arith.,                60                (1991) 								, 1-27.  																doi: 10.4064/aa-60-1-1-27.       | 
| [3] | M. Baake, N. P. Frank, U. Grimm and E. A. Robinson, Geometric properties of a binary non-Pisot inflation and absence of absolutely continuous diffraction,                Studia Math.,                247                (2019) 								, 109-154.  																doi: 10.4064/sm170613-10-3.       | 
| [4] | M. Baake, F. Gähler and U. Grimm, Examples of substitution systems and their factors,                J. Int. Seq.,                16                (2013), 13.2.14, 18 pp.     | 
| [5] | M. Baake, F. Gähler and N. Mañibo, Renormalisation of pair correlation measures for primitive inflation rules and absence of absolutely continuous diffraction,                Commun. Math. Phys.,                370                (2019) 								, 591-635.  																doi: 10.1007/s00220-019-03500-w.       | 
| [6] | M. Baake and 						    						    							    	U. Grimm,                Aperiodic Order Volume 1. A Mathematical Invitation, Cambridge University Press							, Cambridge, 2013.  														doi: 10.1017/CBO9781139025256.       | 
| [7] | M. Baake and U. Grimm, Squirals and beyond: Substitution tilings with singular continuous spectrum,                Ergodic Th. & Dynam. Syst.,                34                (2014) 								, 1077-1102.  																doi: 10.1017/etds.2012.191.       | 
| [8] | M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra,                Ergod. Th. & Dynam. Syst.,                24                (2004) 								, 1867-1893.  																doi: 10.1017/S0143385704000318.       | 
| [9] | M. Baake, D. Lenz and A. van Enter, Dynamical versus diffraction spectrum for structures with finite local complexity,                Ergod. Th. & Dynam. Syst.,                35                (2015) 								, 2017-2043.  																doi: 10.1017/etds.2014.28.       | 
| [10] | E. Bannai and E. Bannai, Spin models on finite cyclic groups,                J. Alg. Combin.,                3                (1994) 								, 243-259.  																doi: 10.1023/A:1022407800541.       | 
| [11] | L. Barreira and 						    						    							    	Y. Pesin,                Nonuniform Hyperbolicity, Cambridge University Press							, Cambridge, 2007.  														doi: 10.1017/CBO9781107326026.       | 
| [12] | A. Bartlett, Spectral theory of $\mathbb{Z}^d$ substitutions,                Ergodic Th. & Dynam. Syst.,                38                (2018) 								, 1289-1341.  																doi: 10.1017/etds.2016.66.       | 
| [13] | A. Berlinkov and B. Solomyak, Singular substitutions of constant length,                Ergodic Th. & Dynam. Syst.,                39                (2019) 								, 2384-2402.  																doi: 10.1017/etds.2017.133.       | 
| [14] | A. I. Bufetov and B. Solomyak, A spectral cocycle for substitution systems and translation flows,                J. Anal. Math.,                141                (2020) 								, 165-205.  																doi: 10.1007/s11854-020-0127-2.       | 
| [15] | C. Cabezas, Homomorphisms between multidimensional constant-shape substitutions,                preprint, arXiv: 2106.10504.   | 
| [16] | L. Chan, U. Grimm and I. Short, Substitution-based structures with absolutely continuous spectrum,                Indag. Math.,                29                (2018) 								, 1072-1086.  																doi: 10.1016/j.indag.2018.05.009.       | 
| [17] | M. I. Cortez, $ {\mathbb{Z}}^d$ Toeplitz arrays,                Discr. Contin. Dynam. Syst. A,                15                (2006) 								, 859-881.  																doi: 10.3934/dcds.2006.15.859.       | 
| [18] | E. M. Coven and A. Meyerowitz, Tiling the integers with translates of one finite set,                J. Algebra,                212                (1999) 								, 161-174.  																doi: 10.1006/jabr.1998.7628.       | 
| [19] | J. Dubédat, Topics on abelian spin models and related problems,                Probab. Surveys,                8                (2011) 								, 374-402.  																doi: 10.1214/11-PS187.       | 
| [20] | E. H. el Abdalaoui and M. Lemańczyk, Approximately transitive dynamical systems and simple spectrum,                Arch. Math.,                97                (2011) 								, 187-197.  																doi: 10.1007/s00013-011-0285-7.       | 
| [21] | T. Fernique, Local rule substitutions and stepped surfaces,                Theoret. Comp. Sci.,                380                (2007) 								, 317-329.  																doi: 10.1016/j.tcs.2007.03.021.       | 
| [22] | N. P. Frank, Introduction to hierarchical tiling dynamical systems, In                Substitution and Tiling Dynamics: Introduction to Self-inducing Structures, S. Akiyama and P. Arnoux (eds.), LNM 2773, Springer, Cham (2020), 33–95.     | 
| [23] | N. P. Frank, Multidimensional constant-length substitution sequences,                Topology & Appl.,                152                (2005) 								, 44-69.  																doi: 10.1016/j.topol.2004.08.014.       | 
| [24] | N. P. Frank, Substitution sequences in $\mathbb{Z}^d$ with a nonsimple Lebesgue component in the spectrum,                Ergodic Th. & Dynam. Syst.,                23                (2003) 								, 519-532.  																doi: 10.1017/S0143385702001256.       | 
| [25] | N. P. Frank and L. Sadun, Fusion: A general framework for hierarchical tilings of $\mathbb{R}^d$,                Geom. Dedicata,                171                (2014) 								, 149-186.  																doi: 10.1007/s10711-013-9893-7.       | 
| [26] | N. P. Frank and L. Sadun, Fusion tilings with infinite local complexity,                Top. Proc.                43                (2014) 235–276.     | 
| [27] | R. Greenfeld and T. Tao, The structure of translational tilings in $\mathbb{Z}^d$,                Discr. Anal.,                16                (2021), arXiv: 2010.03254, 28 pp.     | 
| [28] | K. Gröchenig and A. Haas, Self-similar lattice tilings,                J. Fourier Anal. Appl.,                1                (1994) 								, 131-170.  																doi: 10.1007/s00041-001-4007-6.       | 
| [29] | P. R. Halmos and J. von Neumann, Operator methods in classical mechanics II,                Ann. Math.,                43                (1942) 								, 332-350.  																doi: 10.2307/1968872.       | 
| [30] | H. Helson, Cocycles on the circle,                J. Oper. Theory,                16                (1986) 								, 189-199.     | 
| [31] | R. Kenyon, Self-replicating tilings,                Contemp. Math.,                135                (1992) 								, 239-263.  																doi: 10.1090/conm/135/1185093.       | 
| [32] | J. C. Lagarias and Y. Wang, Integral self-affine tiles in $\mathbb{R}^n$ I. standard and nonstandard digit sets,                J. London Math. Soc.,                54                (1996) 								, 161-179.  																doi: 10.1112/jlms/54.1.161.       | 
| [33] | J. C. Lagarias and Y. Wang, Self-affine tiles in $\mathbb{R}^n$,                Adv. Math.,                121                (1996) 								, 21-49.  																doi: 10.1006/aima.1996.0045.       | 
| [34] | J.-Y. Lee, R. V. Moody and B. Solomyak, Consequences of pure point diffraction spectra for multiset substitution systems,                Discrete Comput. Geom.,                29                (2003) 								, 525-560.  																doi: 10.1007/s00454-003-0781-z.       | 
| [35] | J.-Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and diffraction spectra,                Ann. Henri Poincaré,                3                (2002) 								, 1003-1018.  																doi: 10.1007/s00023-002-8646-1.       | 
| [36] | D. Lenz, Spectral theory of dynamical systems as diffraction theory of sampling functions,                Monats. Math.,                192                (2020) 								, 625-649.  																doi: 10.1007/s00605-020-01419-2.       | 
| [37] | N. Mañibo, Lyapunov exponents for binary substitutions of constant length,                J. Math. Phys.,                58                (2017), 113504, 9 pp.     | 
| [38] | N. Mañibo, D. Rust and J. Walton, Spectral properties of substitutions on compact alphabets,                preprint, arXiv: 2108.01762.   | 
| [39] | R. Meshulam, On subsets of finite abelian groups with no $3$-term arithmetic progression,                J. Combin. Theor. A,                71                (1995) 								, 168-172.  																doi: 10.1016/0097-3165(95)90024-1.       | 
| [40] | M. G. Nadkarni, The skew product, In                Spectral Theory of Dynamical Systems, R. B. Bapat, V. S. Borkar, P. Chaudhuri, et.al. (eds.), Hindustan Book Agency, Gurgaon (1998), 37–39.     | 
| [41] | M. Queffélec,                Substitution Dynamical Systems–Spectral Analysis, 2nd. ed., LNM 1294, Springer, Berlin, 2010.     | 
| [42] | M. Queffélec, Une nouvelle properiété des suites de Rudin–Shapiro,                Ann. Inst. Fourier,                37                (1987) 								, 115-138.  																doi: 10.5802/aif.1089.       | 
| [43] | E. A. Robinson, Non-abelian extensions have nonsimple spectrum,                Compos. Math.,                65                (1988), 155-170.     | 
| [44] | B. Solomyak, Dynamics of self-similar tilings,                Ergodic Th. & Dynam. Syst.,                17                (1997), 695–738 and                Ergodic Th.                &                Dynam. Syst.,                19                (1999), 1685 (erratum).     | 
| [45] | B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings,                Discrete Comput. Geom.,                20                (1998) 								, 265-279.  																doi: 10.1007/PL00009386.       | 
| [46] | M. Viana,                Lectures on Lyapunov Exponents, Cambridge University Press							, Cambridge, 2014.  														doi: 10.1017/CBO9781139976602.       | 
| [47] | A. Vince, Digit tiling of Euclidean space, In                Directions in Mathematical Quasicrystals, M. Baake and R. V. Moody (eds.), AMS, Providence, RI (2000), 329–370.     | 
| [48] | A. Vince, Rep-tiling Euclidean space,                Aequationes Math.,                50                (1995) 								, 191-213.  																doi: 10.1007/BF01831118.       | 
woodruffbleturejaway.blogspot.com
Source: https://www.aimsciences.org/article/doi/10.3934/dcds.2022105
0 Response to "Squirals and Beyond Substitution Tilings With Singular Continuous Spectrum"
Postar um comentário